Röchling

Industrial

Technical Data Sheet Sustadur[®] PET GLD 130 natural

Typical characteristics

- High rigidity
- Good dimensional stability
- Good sliding properties

Typical industries

- Elettronica
- Tecnologia di trasporto e automazione
- Prodotti da forno o dolciari
- lavorazione carne, pesce e pollame
- Industria delle bevande
- Ingegneria meccanica e impiantistica
- Industria alimentare

	Test method	Unit	Guideline value
General properties			
Density	DIN EN ISO 1183-1	g / cm ³	1,44
Water absorption	DIN EN ISO 62	%	0,2
Flammability (Thickness 3 mm / 6 mm)	UL 94		HB / HB
Mechanical properties			
Yield stress	DIN EN ISO 527	MPa	75
Elongation at break	DIN EN ISO 527	%	5
Tensile modulus of elasticity	DIN EN ISO 527	MPa	3300
Notched impact strength	DIN EN ISO 179	kJ / m ²	2,0
Shore hardness	DIN EN ISO 868	scale D	82
Thermal properties			
Melting temperature	ISO 11357-3	°C	248
Thermal conductivity	DIN 52612-1	W / (m * K)	0,28
Coefficient of linear thermal expansion	DIN 53752	10 ⁻⁶ / K	65
Service temperature, long term	Average	°C	-20 115
Service temperature, short term (max.)	Average	°C	180
Heat deflection temperature	DIN EN ISO 75, Verf. A, HDT	°C	75

Röchling Industrial Lahnstein SE & Co. KG Sustaplast-Str. 1 • 56112 Lahnstein/Germany (DE) • Tel. +49 2621 693-0 info.lahnstein@roechling.com • www.roechling.com/industrial/lahnstein

Print: 05/02/2025 • Release: 16/07/2024 • Version: 2.0 PIM-Version: 742 • PIM-ID: 591075 • PIM-Code: 742-26-11.153.223-8.11.5.5.6.5.5-6

Röchling

	Test method	Unit	Guideline value
Electrical properties			
Dielectric constant	IEC 60250		3,4
Dielectric dissipation factor (50 Hz)	IEC 60250		0,001
Volume resistivity	DIN EN 62631-3-1	Ω*cm	10 ¹⁸
Surface resistivity	DIN EN 62631-3-2	Ω	10 ¹⁶
Comparative tracking index	IEC 60112		600
Dielectric strength	IEC 60243	kV / mm	20

The short-term maximum application temperature only applies to very low mechanical stress for a few hours. The long-term maximum application temperature is based on the thermal ageing of plastics by oxidation, resulting in a decrease of the mechanical properties. This applies to an exposure to temperatures for at least 5.000 hours causing a 50% loss of the tensile strength from the original value (measured at room temperature). This value says nothing about the mechanical strength of the material at high application temperatures. In case of thick-walled parts, only the surface layer is affected by oxidation from high temperatures. With the addition of antioxidants, a better protection of the surface layer is achieved. In any case, the center area of the material refer to an minimum degree of impact stress. The electrical properties as stated result from measurements on natural, dry material. With other colours (in particular black) or saturated material, there may be clear differences in the electrical properties. The data stated above are a guide to choose from our range of materials. This, however, does not include an assurance of specific properties or the suitability for particular application purposes that are legally binding. Since the properties also depend on the dimension of the semi-finished products and the degree of crystallization (e.g. nucleating by pigments), the actual values of the properties of a particular product may differ from the indicated values.

Print: 05/02/2025 • Release: 16/07/2024 • Version: 2.0 PIM-Version: 742 • PIM-ID: 591075 • PIM-Code: 742-26-11.153.223-8.11.5.5.6.5.5-6

